
Search & Sorting Algorithms Study Notes 1

🔖
Search & Sorting Algorithms
Study Notes
Linear Search
Linear Search is a sequential search algorithm that checks each element in a list
one by one until a match is found or the entire list has been searched. It is simple
to implement but can be inefficient for large datasets since it has a time
complexity of O(n). It takes longer as the n data size increases.

Time Complexity: O(n) Linear

Watch this 2-min video: https://youtu.be/19hcyQN8J7o?si=HyZ3Uc_m2gFKARNk

Binary Search
Binary Search is a more efficient searching algorithm that requires a sorted list as
input. It works by repeatedly dividing the search space in half, comparing the
middle element with the target value, and eliminating half of the remaining
elements based on the comparison. This divide-and-conquer approach gives
Binary Search a time complexity of O(log n), making it much faster than Linear
Search for large datasets.

Time Complexity: O(log n) Logarithmic

Watch this 4-min video: https://www.youtube.com/watch?v=fDKIpRe8GW4

Bubble Sort
Bubble Sort is a simple sorting algorithm that repeatedly steps through the list,
compares adjacent elements, and swaps them if they are in the wrong order.
While easy to understand and implement, it has a time complexity of O(n²),
making it inefficient for large datasets. The algorithm gets its

name from the way smaller elements "bubble" to the top of the list with each
iteration.

https://youtu.be/19hcyQN8J7o?si=HyZ3Uc_m2gFKARNk
https://www.youtube.com/watch?v=fDKIpRe8GW4

Search & Sorting Algorithms Study Notes 2

Time Complexity: O(n ²) Quadratic

Watch this 2-min video: https://youtu.be/xli_FI7CuzA?si=4_WVl3IIaIV5KVJE

Selection Sort
Selection Sort is a sorting algorithm that works by repeatedly finding the minimum
element from the unsorted portion of the list and placing it at the beginning. The
algorithm maintains two subarrays: one that is sorted and one that is unsorted.
Like Bubble Sort, Selection Sort has a time complexity of O(n²), but it generally
performs better than Bubble Sort as it makes fewer swaps.

Time Complexity: O(n ²) Quadratic

Watch this 3-min video: https://www.youtube.com/watch?v=g-PGLbMth_g

Insertion Sort
Insertion Sort is a sorting algorithm that builds the final sorted array one element
at a time. It works by taking elements from the unsorted part and inserting them
into their correct position in the sorted part of the array. While it also has a time
complexity of O(n²), Insertion Sort performs well on small datasets and is
particularly efficient when dealing with arrays that are already partially sorted.

Time Complexity: O(n ²) Quadratic

Watch this 2-min video: https://youtu.be/JU767SDMDvA?si=i_MQ_hXZdxvJ2R7t

Merge Sort
Merge Sort is a highly efficient divide-and-conquer sorting algorithm that works
by dividing the array into smaller subarrays, sorting them, and then merging them
back together. It consistently performs well with a time complexity of O(n log n),
making it much faster than the simpler sorting algorithms for large datasets.
Although it requires additional memory space, Merge Sort is stable and
predictable, making it a popular choice for sorting linked lists and in situations
where stable sorting is required.

Time Complexity: O(n log n) Linearithmic

Watch this 3-min video: https://youtu.be/4VqmGXwpLqc?si=4w--nqBk8P3yolTx

https://youtu.be/xli_FI7CuzA?si=4_WVl3IIaIV5KVJE
https://www.youtube.com/watch?v=g-PGLbMth_g
https://youtu.be/JU767SDMDvA?si=i_MQ_hXZdxvJ2R7t
https://youtu.be/4VqmGXwpLqc?si=4w--nqBk8P3yolTx

Search & Sorting Algorithms Study Notes 3

Quick Sort
Quick Sort is another efficient divide-and-conquer sorting algorithm that works by
selecting a 'pivot' element and partitioning the array around it, with smaller
elements placed before the pivot and larger elements after it. This process is
recursively applied to the sub-arrays until the entire array is sorted. While Quick
Sort has an average time complexity of O(n log n) and performs extremely well in
practice due to its efficient cache usage, its worst-case time complexity is O(n²),
though this can be mitigated with proper pivot selection strategies.

Time Complexity: O(n ²) Quadratic

Watch this 4-min video: https://www.youtube.com/watch?v=Hoixgm4-P4M

Bucket Sort
Bucket Sort is a distribution-based sorting algorithm that works by distributing
elements into a number of buckets, then sorting these buckets individually. It
assumes uniform distribution of the input data across buckets and performs well
when this assumption holds true. The algorithm has an average time complexity of
O(n + k), where k is the number of buckets.

Time Complexity: O(n + k) Linear (where k is the number of buckets)

Watch this short video: https://youtu.be/H5WT4x4crdI?si=v2B8A6w0E3C6oW4B

Heap Sort
Heap Sort is a comparison-based sorting algorithm that uses a binary heap data
structure to sort elements. It works by first building a max-heap from the input
array, then repeatedly extracting the maximum element and rebuilding the heap
until all elements are sorted. While it has a consistent time complexity of O(n log
n) and sorts in-place, it typically performs slower than Quick Sort in practice due
to poor cache performance.

Time Complexity: O(n log n) Linearithmic

Watch this 4-min video: https://youtu.be/2DmK_H7IdTo

https://www.youtube.com/watch?v=Hoixgm4-P4M
https://youtu.be/H5WT4x4crdI?si=v2B8A6w0E3C6oW4B
https://youtu.be/2DmK_H7IdTo

